Перейти к содержанию

МатАнПрод:Интегрирование рациональных функций

Материал из Мадока ВТ Вики
Версия от 16:08, 14 апреля 2025; Ivabus (обсуждение | вклад) (Импорт)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Определение: Многочленом (полиномом) Pn(x) степени n (n0, n) называется функция вида: Pn(x)=a0+a1x+a2x2++anxn, где ai, an0.

Определение: Рациональной функцией (рациональной дробью) называется функция вида Pn(x)Qm(x), где Pn(x) и Qm(x) - многочлены.

Определение: Рациональная функция Pn(x)Qm(x) называется правильной, если степень числителя меньше степени знаменателя: deg(Pn(x))<deg(Qm(x)). В противном случае (если nm) дробь называется неправильной.

Теорема (о делении многочленов с остатком): Если рациональная дробь Pn(x)Qm(x) является неправильной (nm), то существует единственное представление в виде: Pn(x)Qm(x)=Mnm(x)+Nk(x)Qm(x) где Mnm(x) - многочлен (целая часть), а Nk(x)Qm(x) - правильная рациональная дробь (k=deg(Nk(x))<m).

Определение: Число x0 называется корнем многочлена Qm(x), если Qm(x0)=0.

Теорема Безу: Число x0 является корнем многочлена Qm(x) тогда и только тогда, когда Qm(x) делится на (xx0) без остатка, т.е. Qm(x0)=0Qm(x)=(xx0)Qm1(x), где Qm1(x) - многочлен степени m1.

Теорема (о комплексных корнях многочлена с действительными коэффициентами): Если многочлен Qm(x) имеет действительные коэффициенты и число x0=α+iβ (β0) является его корнем, то сопряженное число x¯0=αiβ также является корнем Qm(x). Доказательство: Пусть Qm(x)=c0+c1x++cmxm, где ci. Если Qm(x0)=0, то c0+c1x0++cmx0m=0. Возьмем комплексное сопряжение от обеих частей: c0+c1x0++cmx0m=0 c0+c1x0++cmx0m=0 Так как ci, то ci=ci. Используя свойства сопряжения (a+b=a¯+b¯, ab=a¯b¯), получаем: c0+c1x¯0++cmx¯0m=0. Это означает, что Qm(x¯0)=0, т.е. x¯0 - корень Qm(x).

Основная теорема алгебры: Всякий многочлен степени m1 с действительными (или комплексными) коэффициентами имеет по крайней мере один корень в поле комплексных чисел .

Следствие: Любой многочлен Qm(x) степени m1 с действительными коэффициентами имеет ровно m корней в (с учетом их кратности).