МатАнПрод:ВопросыКлк2сем
Первообразная. Теорема о семействе первообразных функции. Неопределенный интеграл, его свойства. Таблица основных формул интегрирования.
Определение (Первообразная): Функция называется первообразной для функции на интервале , если дифференцируема на и выполняется равенство:
- для всех .
Теорема (О семействе первообразных): Если является первообразной для функции на интервале , то любая другая первообразная для на том же интервале имеет вид:
- ,
где — произвольная постоянная ().
Определение (Неопределенный интеграл): Совокупность всех первообразных для функции на интервале называется неопределенным интегралом от функции и обозначается символом .
- , где .
Свойства неопределенного интеграла:
- Производная неопределенного интеграла равна подынтегральной функции:
- Дифференциал неопределенного интеграла равен подынтегральному выражению:
- Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная:
- Линейность: Если и существуют, то для любых констант существует , и
Таблица основных формул интегрирования:
- ()
- ()
- ()
- ()
- (длинный логарифм)
Метод замены переменной в неопределенном интеграле. Интегрирование по частям.
Пусть требуется вычислить .
Теорема (Формула замены переменной): Пусть функция имеет непрерывную производную , и существует обратная функция . Пусть существует интеграл . Тогда существует и выполняется равенство:
Идея метода: 1. Вводим новую переменную через подстановку (или ). 2. Находим дифференциал . 3. Подставляем и в исходный интеграл, выражая его через : . 4. Вычисляем полученный интеграл по переменной . 5. Возвращаемся к исходной переменной , используя обратную замену .
Альтернативная форма (подстановка вида ): Если , то . Если подынтегральное выражение можно представить как , то:
Метод интегрирования по частям
Теорема (Формула интегрирования по частям): Пусть функции и имеют непрерывные производные и на некотором интервале. Тогда справедливо равенство:
или, в дифференциальной форме (, ):
Вывод формулы: Формула следует из правила дифференцирования произведения двух функций:
Интегрируя обе части по , получаем:
По определению неопределенного интеграла, . Учитывая, что интеграл в правой части также вычисляется с точностью до константы, её можно опустить на этом шаге:
Перенося в другую часть равенства, получаем формулу интегрирования по частям:
Идея метода: Представить подынтегральное выражение в виде так, чтобы интеграл был проще исходного или сводился к нему.
Интегрирование рациональных функций путем разложения на простейшие дроби.
Определение (Рациональная функция): Рациональная функция (или дробь) — это функция вида , где и — многочлены степеней и соответственно.
Шаг 1: Выделение целой части (если дробь неправильная) Если (дробь неправильная), то делим на "уголком":
- ,
где — многочлен (целая часть), а — правильная рациональная дробь (). Интегрирование сводится к:
Интеграл от многочлена вычисляется просто. Основная задача — интегрирование правильной рациональной дроби.
Шаг 2: Разложение правильной рациональной дроби на простейшие Пусть дана правильная дробь ().
1. Факторизация знаменателя: Разложить знаменатель на неприводимые множители над :
: где — действительные корни кратности , , и . Константу можно вынести за знак интеграла.
2. Теорема о разложении: Любая правильная рациональная дробь (с ) может быть единственным образом представлена в виде суммы простейших дробей:
: где — неопределенные коэффициенты.
3. Нахождение коэффициентов: Коэффициенты находятся методом неопределенных коэффициентов или методом частных значений (подстановкой удобных значений , включая корни знаменателя).
Шаг 3: Интегрирование простейших дробей
- Тип I:
- Тип II: ()
:
- Тип III: ()
: : : (знаменатель )
- Тип IV: ()
: : (где ) : :Интеграл (где ) вычисляется по рекуррентной формуле: :, сводящей его к .
Вывод: Интеграл от любой рациональной функции выражается через элементарные функции: многочлены, рациональные дроби, логарифмы и арктангенсы.
Интегрирование иррациональных функций.
Здесь обозначает рациональную функцию своих аргументов.
1. Интегралы вида
- Условие: (рациональные), , .
- Метод: Рационализация с помощью подстановки.
1. Найти . 2. Использовать подстановку: . 3. Выразить и через рационально. Все дробные степени станут целыми степенями . 4. Интеграл сводится к , где — рациональная функция.
2. Интегралы вида
- Условие: , , .
- Методы:
* Подстановки Эйлера: Рационализируют подынтегральную функцию. 1. Если : . 2. Если : . 3. Если имеет действительные корни (): (или ). Все подстановки приводят к интегралу от рациональной функции . * Метод Остроградского (для частного случая): Для интеграла вида существует разложение: : где — многочлен степени с неопределенными коэффициентами, — константа. Коэффициенты находятся дифференцированием и приравниванием коэффициентов. Оставшийся интеграл — табличный. * Общий случай: Интеграл можно свести к сумме интеграла от рациональной функции и интеграла вида . Последний, в свою очередь, раскладывается на сумму интегралов вида: * (берется методом Остроградского). * (сводится к предыдущему типу подстановкой ). * (сводится более сложными подстановками, например, Абеля или дробно-линейной).
3. Интегралы от дифференциального бинома
- Условие: ; ; .
- Теорема Чебышёва: Интеграл выражается через элементарные функции только в трех случаях:
1. (p — целое). Подстановка: , где . 2. (целое). Подстановка: , где . 3. (целое). Подстановка: (или ), где . Во всех трех случаях интеграл сводится к интегралу от рациональной функции .
Интегрирование выражений, содержащих тригонометрические функции.
Здесь обозначает рациональную функцию своих аргументов.
1. Интегралы вида
- Универсальная тригонометрическая подстановка:
Всегда работает, но может приводить к сложным вычислениям. : Тогда: : Интеграл сводится к , где — рациональная функция .
- Частные случаи (упрощающие подстановки):
1. Если (нечетность по ): Подстановка: . 2. Если (нечетность по ): Подстановка: . 3. Если (четность по и одновременно): Подстановка: . : (При подстановке в корни обычно сокращаются).
2. Интегралы вида , где
- Если хотя бы один из показателей или — нечетное положительное число:
* Если нечетно: отщепляем и делаем замену . * Если нечетно: отщепляем и делаем замену .
- Если оба показателя и — четные неотрицательные числа:
Используем формулы понижения степени: :.
- Если — четное отрицательное число (или оба показателя отрицательные):
Используем подстановку (или ). Это случай (3) из пункта 1.
3. Интегралы вида , ,
- Используются формулы преобразования произведения тригонометрических функций в сумму/разность:
* * *
4. Интегралы вида
- Интегрируются аналогично тригонометрическим функциям.
- Универсальная подстановка: .
:.
- Частные случаи (нечетность/четность) и интегрирование произведений степеней аналогичны тригонометрическим, но с использованием гиперболических тождеств (например, ).
Определенный интеграл. Эквивалентность различных определений. Свойства линейности и аддитивности интеграла Римана. Теорема о среднем.
Пусть .
- Разбиение отрезка : .
- Частичный отрезок: .
- Длина отрезка: .
- Ранг (мелкость) разбиения: .
- Отмеченные точки: , где .
- Оснащенное разбиение: .
- Интегральная сумма Римана: .
Определение (Интеграл Римана через ): Число называется определенным интегралом (интегралом Римана) функции на , если
- .
Обозначение: . Функция называется интегрируемой по Риману на (обозначение ).
Определение (Интеграл Римана через последовательности): Число называется пределом интегральных сумм при , если для любой последовательности оснащенных разбиений такой, что , выполняется:
- .
Теорема (Эквивалентность определений): Определение интеграла Римана через эквивалентно определению через предел последовательностей интегральных сумм.
Свойства интеграла Римана
Теорема (Линейность): Если и , то и
- .
(Док-во: следует из линейности сумм и линейности предела.)
Теорема (Аддитивность по отрезку интегрирования): 1. Если и , то и . 2. Если и , то и
:. (Используя соглашения и , формула верна для любого расположения .)
Теорема (О среднем): Пусть: 1. . 2. знакопостоянна на (т.е. или ). 3. , . Тогда такое, что:
- .
Дополнительно: Если (непрерывна), то такое, что :
- .
Частный случай (при ):
- Если , то .
- Если , то .
Величина называется средним значением функции на .
Определенный интеграл. Свойства об оценках интеграла Римана. Теорема о среднем.
Предполагается и функции интегрируемы на .
1. Монотонность интеграла: Если и для всех , то
- .
(Док-во: из и следует , переходим к пределу при .)
Следствие 1 (Неотрицательность): Если на , то . (Следует из монотонности при или и .)
Следствие 2 (Оценка интеграла константами): Если и для всех , то
- .
(Док-во: интегрируем неравенство , используя и .) Здесь и .
2. Интегрирование неравенства с модулем: Если , то и
- .
(Док-во 1: из и монотонности интеграла.) (Док-во 2: из и перехода к пределу.)
Теорема (О среднем): Пусть: 1. . 2. знакопостоянна на (т.е. или ). 3. , . Тогда такое, что:
- .
Дополнительно: Если (непрерывна), то по теореме о промежуточном значении такое, что :
- .
Частный случай (при ):
- Если , то .
- Если , то .
Величина называется средним значением функции на .
Суммы Дарбу и их свойства.
Пусть и — разбиение отрезка . Обозначим и .
Определения:
- — точная нижняя грань на .
- — точная верхняя грань на .
(Для существования конечных требуется ограниченность на .)
- Нижняя сумма Дарбу:
:
- Верхняя сумма Дарбу:
:
Свойства сумм Дарбу:
1. Связь с интегральной суммой Римана: Для любого оснащенного разбиения верно:
:
2. Суммы Дарбу как точные грани интегральных сумм: При фиксированном разбиении :
: : (Супремум и инфимум берутся по всем возможным наборам отмеченных точек .)
3. Необходимость ограниченности: Если не ограничена на , то для любого разбиения хотя бы одна из сумм Дарбу ( или ) будет бесконечной ( или ).
4. Монотонность при измельчении разбиения: Пусть — измельчение (т.е., содержит все точки , ). Тогда:
: (При добавлении новых точек нижняя сумма не убывает, верхняя — не возрастает.)
5. Сравнение любых сумм Дарбу: Для любых двух разбиений и отрезка выполняется:
: (Любая нижняя сумма не превосходит любую верхнюю сумму.)
6. Нижний и верхний интегралы Дарбу:
* Нижний интеграл Дарбу: (супремум по всем разбиениям ) * Верхний интеграл Дарбу: (инфимум по всем разбиениям ) * Для любого : .
Необходимое условие интегрируемости функции. Критерий интегрируемости функции.
Теорема: Если функция интегрируема по Риману на (т.е., ), то ограничена на .
- .
Идея доказательства: Предполагаем, что интегрируема, но не ограничена. Тогда для любого разбиения найдется отрезок , на котором не ограничена. На этом отрезке можно выбрать отмеченные точки так, чтобы значение было сколь угодно большим (по модулю). Это позволяет построить интегральные суммы , которые не стремятся к конечному пределу , что противоречит определению интегрируемости. Следовательно, должна быть ограничена.
Критерий интегрируемости функции по Риману (Критерий Дарбу)
Теорема: Ограниченная функция интегрируема по Риману на тогда и только тогда, когда выполняется одно из следующих эквивалентных условий:
1. В терминах сумм Дарбу: Предел разности верхней и нижней сумм Дарбу равен нулю при стремлении ранга разбиения к нулю:
: Или, в форме: :.
2. В терминах интегралов Дарбу: Нижний интеграл Дарбу равен верхнему интегралу Дарбу:
:, где и . В этом случае .
3. В терминах колебаний:
Обозначим (колебание на ). Тогда: : Или, в форме: :.
Идея доказательства ( Необходимость): Если , то , что для , . Отсюда и . Вычитая, получаем . Идея доказательства ( Достаточность): Если , то . Из и следует . Так как правая часть стремится к 0, то , значит .
Классы интегрируемых функций. Интегрируемость непрерывной и кусочно-непрерывной функции.
Напомним, что функция интегрируема по Риману на () если существует конечный предел интегральных сумм .
Необходимое условие: Если , то ограничена на .
Критерий Дарбу (в терминах колебания): , где — колебание функции на отрезке .
--- Теорема 1: Интегрируемость непрерывных функций Если функция непрерывна на отрезке (), то она интегрируема по Риману на ().
Доказательство (идея): 1. Если , то равномерно непрерывна на (Теорема Кантора). 2. . 3. Возьмем разбиение с рангом . Тогда для любого , его длина . 4. Колебание для некоторых (т.к. непрерывна на ). 5. Поскольку , то . 6. Оцениваем сумму из критерия Дарбу:
:.
7. Так как при , по критерию Дарбу .
--- Определение (Кусочно-непрерывная функция, КНФ): Функция называется кусочно-непрерывной на , если: 1. Существует конечное разбиение . 2. На каждом интервале функция непрерывна. 3. В каждой точке () существуют конечные односторонние пределы (для ) и (для ).
(Т.е. все точки разрыва - это точки разрыва I рода).
Теорема 2: Интегрируемость кусочно-непрерывных функций Если функция кусочно-непрерывна на отрезке , то она интегрируема по Риману на ().
Доказательство (идея): 1. Ограниченность: КНФ ограничена на , так как она непрерывна на интервалах и имеет конечные пределы в точках разрыва . 2. Вспомогательная функция: Рассмотрим функцию , которая совпадает с во всех точках непрерывности . В точках доопределим любыми значениями (например, или ). 3. Интегрируемость на подынтервалах: На каждом замкнутом отрезке функция может быть доопределена в концах так, чтобы стать непрерывной на этом отрезке (например, , ). Такая доопределенная функция непрерывна на , следовательно, . 4. Интегрируемость на : По свойству аддитивности, если функция интегрируема на частях , то она интегрируема и на всем отрезке . Таким образом, . 5. Связь и : Функции и отличаются только в конечном числе точек . 6. Теорема об изменении в конечном числе точек: Изменение значений интегрируемой функции в конечном числе точек не влияет на её интегрируемость и значение интеграла. 7. Вывод: Так как и отличается от в конечном числе точек, то и .
Другие важные классы интегрируемых функций:
- Монотонные функции: Если монотонна на , то .
- Функции с конечным числом точек разрыва: Если ограничена на и имеет конечное число точек разрыва, то . (КНФ - частный случай).
Определенный интеграл. Арифметические свойства интегрируемых функций.
Пусть (т.е. и интегрируемы по Риману на ). Из необходимого условия интегрируемости следует, что и ограничены на .
Теорема: 1. Линейность: Для любых , функция интегрируема на , и
:.
2. Произведение: Функция интегрируема на ().
(Важно: В общем случае .)
3. Модуль: Функция интегрируема на (). 4. Частное: Если такое, что для всех , то функция интегрируема на .
(Достаточно доказать для , тогда будет интегрируема по п.2.)
Доказательства (идеи, использующие критерий Дарбу в терминах колебаний): Напомним критерий: . По условию, и при .
1. Линейность:
Используем свойство колебания: . Тогда . Правая часть стремится к при . Следовательно, левая часть тоже стремится к 0, и . Формула для интеграла получается из линейности интегральных сумм и линейности предела.
2. Произведение:
Так как интегрируемы, они ограничены: . Пусть . Используем свойство колебания: . Тогда . Правая часть стремится к при . Значит, .
3. Модуль:
Используем свойство: . Взяв супремум, получаем . Тогда . Правая часть стремится к при . Значит, .
4. Частное (для ):
Пусть . Используем свойство: . Взяв супремум, получаем . Тогда . Правая часть стремится к при . Значит, . Интегрируемость следует из п.2.