Материал из Мадока ВТ Вики
Первообразная. Теорема о семействе первообразных функции. Неопределенный интеграл, его свойства. Таблица основных формул интегрирования.
Определение (Первообразная):
Функция называется первообразной для функции на интервале , если дифференцируема на и выполняется равенство:
- для всех .
Теорема (О семействе первообразных):
Если является первообразной для функции на интервале , то любая другая первообразная для на том же интервале имеет вид:
- ,
где — произвольная постоянная ().
Определение (Неопределенный интеграл):
Совокупность всех первообразных для функции на интервале называется неопределенным интегралом от функции и обозначается символом .
- , где .
Свойства неопределенного интеграла:
- Производная неопределенного интеграла равна подынтегральной функции:
- Дифференциал неопределенного интеграла равен подынтегральному выражению:
- Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная:
- Линейность: Если и существуют, то для любых констант существует , и
Таблица основных формул интегрирования:
- ()
- ()
- ()
- ()
- (длинный логарифм)
Метод замены переменной в неопределенном интеграле. Интегрирование по частям.
Интегрирование рациональных функций путем разложения на простейшие дроби.
Интегрирование иррациональных функций.
Интегрирование выражений, содержащих тригонометрические функции.
Определенный интеграл. Эквивалентность различных определений. Свойства линейности и аддитивности интеграла Римана. Теорема о среднем.
Определенный интеграл. Свойства об оценках интеграла Римана. Теорема о среднем.
Суммы Дарбу и их свойства.
Необходимое условие интегрируемости функции. Критерий интегрируемости функции.
Классы интегрируемых функций. Интегрируемость непрерывной и кусочно-непрерывной функции.
Определенный интеграл. Арифметические свойства интегрируемых функций.
Интеграл с переменным верхним пределом. Свойства непрерывности и дифференцируемости интеграла с переменным верхним пределом.
Интеграл с переменным верхним пределом. Существование первообразной у непрерывной функции. Формула Ньютона - Лейбница.
Замена переменной в определенном интеграле. Интегрирование по частям. Свойства определённого интеграла от чётной, нечётной и периодической функций.
Приложение определённых интегралов к вычислению площадей плоских фигур. Понятие, свойства и вычисление площади плоской фигуры.
Приложение определённых интегралов к вычислению объемов тел. Понятие, свойства и вычисление объёма тела.
Приложение определённых интегралов к вычислению длин дуг кривых. Понятия пути, гладкости пути, эквивалентности путей, кривой, гладкости кривой, ломаной, вписанной в путь, длины пути, длины кривой, спрямляемости пути. Свойства эквивалентных путей. Вычисление длины вписанной ломаной. Свойство аддитивности длины пути.
Приложение определённых интегралов к вычислению длин дуг кривых. Понятия пути, гладкости пути, эквивалентности путей, кривой, гладкости кривой, ломаной, вписанной в путь, длины пути, длины кривой, спрямляемости пути. Достаточное условие спрямляемости пути. Свойство непрерывной дифференцируемости длины части пути. Вычисление длины пути.
Несобственные интегралы: основные понятия, свойства линейности, монотонности, аддитивности по промежутку. Критерий сходимости несобственного интеграла в терминах остатка.
Несобственные интегралы: основные понятия. Формула интегрирования по частям. Формула замены переменной.
Несобственные интегралы: основные понятия. Критерий сходимости несобственного интеграла от знакопостоянной функции. Признаки сравнения.
Несобственные интегралы: основные понятия. Критерий Коши сходимости несобственных интегралов. Абсолютно и условно сходящиеся несобственные интегралы. Свойства сходимости абсолютно сходящегося интеграла и инвариантности типа сходимости несобственного интеграла при изменении подынтегральной функции на аддитивное абсолютно интегрируемое слагаемое.
Несобственные интегралы: основные понятия. Признаки Дирихле и Абеля сходимости несобственных интегралов. Главное значение несобственного интеграла.